Characterisation Of The NA62 GigaTracker End Of Column Readout ASIC

M. Noy1,a, G. Aglieri Rinellaa, M. Fiorinia, P. Jarrona, J. Kaplona, A. Klugea, E. Martinb, M. Morela, L. Perktolda

aCERN, CH-1211 Geneva 23, Switzerland

bUniversité Catholique de Louvain 1, Place de l’Université BE-1348 Louvain-la-Neuve

TWEPP-10.
20th-24th September 2010
Aachen.

1matthew.noy@cern.ch
1. GTK Architecture and Requirements

2. Demonstrator ASIC

3. Testing Ethos and Methodology

4. Results
 - TDC Performance
 - Test Pixel Performance
 - Electrical Charge Injection: ASIC Full Chain

5. Synopsis
1 GTK Architecture and Requirements

2 Demonstrator ASIC

3 Testing Ethos and Methodology

4 Results
 - TDC Performance
 - Test Pixel Performance
 - Electrical Charge Injection: ASIC Full Chain

5 Synopsis
The GigaTracker

- Mag1
- Mag2
- Mag3
- Mag4

- GTK1
- GTK2
- GTK3

- 60 mm
- 13.2 m
- 9.6 m
- 250 m

- p_π
- p_k
- $\theta_{\pi K}$
Beam Profile

60 mm

27 mm
GTK Architecture and Requirements

Beam and Detector Profile

- Width: 60 mm
- Height: 27 mm
- Height of the profile: 13.5 mm
- Height of the profile: 4.5-6 mm
- S.P13 rate: 1 MHz/mm², total rate: 1 GHz
GigaTracker Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation Environment</td>
<td>$10^{14} \text{n cm}^{-2} \text{yr}^{-1}$</td>
</tr>
<tr>
<td>Columns/Readout Chip</td>
<td>40</td>
</tr>
<tr>
<td>Pixels/Column</td>
<td>45</td>
</tr>
<tr>
<td>Pixel Size</td>
<td>$300 \mu m \times 300 \mu m$</td>
</tr>
<tr>
<td>Beam Rate</td>
<td>$800 \text{MHz} \rightarrow 1 \text{GHz}$</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>$\sim 1fC \rightarrow 10fC$</td>
</tr>
<tr>
<td>Q_{MP}</td>
<td>$2.4fC$</td>
</tr>
<tr>
<td>Front End Peaking Time</td>
<td>$\sim 4\text{ns}$</td>
</tr>
<tr>
<td>Time Binning</td>
<td>$\sim 97\text{ps}$</td>
</tr>
<tr>
<td>Momentum Resolution</td>
<td>0.4%</td>
</tr>
<tr>
<td>Efficiency</td>
<td>$\geq 99%$</td>
</tr>
</tbody>
</table>
1. GTK Architecture and Requirements

2. Demonstrator ASIC

3. Testing Ethos and Methodology

4. Results
 - TDC Performance
 - Test Pixel Performance
 - Electrical Charge Injection: ASIC Full Chain

5. Synopsis
EoC Design Overview

Final ASIC: x 40

Single Test Column: 45 Pixels

On-Chip Transmission lines

Hit Arbiter

Hit Register 8

Hit Register 2

Hit Register 1

Hit Register 0

DLL

Coarse Counters

Pixel Array: x 1
x 20
x 40

End Of Column

Final ASIC: x 40

4 x 1.5Gbit/s
2 x 3 Gbit/s

End Of Column

Hit Register 0

Hit Register 1

Hit Register 2

Hit Register 8

Pixel 44
Pixel 43
Pixel 42
Pixel 0

M. Noy (PH-ESE-FE, CERN)

NA62 GTK EOC

TWEPP-10. 21.09.2010
320 MHz clock, 32 starved delay cells → 97 ps time bin.
Time Over Threshold Time Walk Correction

- Pre-Amp Output
- Discriminator Output
- Peaking Time = 4 ns
- Time Walk
- Time Over Threshold

\(V_{\text{Threshold}} \)

\(T_0 \), \(T_1 \), \(T_2 \)
EoC: Chip Top Level Layout
EoC: Chip Top Level Layout

- **test pads**
- **test pixels**
- **1 folded column of 45 pixels**
- **EOC**
- **pads**
EoC Chip
EoC Assembly
1. GTK Architecture and Requirements

2. Demonstrator ASIC

3. Testing Ethos and Methodology

4. Results
 - TDC Performance
 - Test Pixel Performance
 - Electrical Charge Injection: ASIC Full Chain

5. Synopsis
Mechanisms

- **Electrical**
 - 20 fF Charge injection capacitor included in the pixel
 - Voltage step induces charge injection at front end of 1 (or more) pixel(s)
Mechanisms

- **Electrical**
 - 20 fF Charge injection capacitor included in the pixel
 - Voltage step induces charge injection at front end of 1 (or more) pixel(s)

- **Radioactive Source**
 - Absolute gain calibration from pulse height spectra (analogue pixel)
 - 109Cd and 241Am γ emissions used
Mechanisms

- **Electrical**
 - 20 fF Charge injection capacitor included in the pixel
 - Voltage step induces charge injection at front end of 1 (or more) pixel(s)

- **Radioactive Source**
 - Absolute gain calibration from pulse height spectra (analogue pixel)
 - 109Cd and 241Am γ emissions used

- **Laser Charge Injection**
 - 60 ps FWHM, 1060 nm Laser
 - Light pulse timing is good to $\sim 5 ps$ RMS
 - spot size $\sim 10 \mu m$ at focal distance
 - X-Y stage to scan laser spot across pixel matrix
Mechanisms

- **Electrical**
 - 20 \(fF \) Charge injection capacitor included in the pixel
 - Voltage step induces charge injection at front end of 1 (or more) pixel(s)

- **Radioactive Source**
 - Absolute gain calibration from pulse height spectra (analogue pixel)
 - \(^{109}\)Cd and \(^{241}\)Am \(\gamma \) emissions used

- **Laser Charge Injection**
 - 60\(ps \) FWHM, 1060\(nm \) Laser
 - Light pulse timing is good to \(\sim 5 \)\(ps \) RMS
 - spot size \(\sim 10 \)\(\mu m \) at focal distance
 - X-Y stage to scan laser spot across pixel matrix

- **Beam test**
 - 10\(GeV \) \(\pi^+ / p^+ \) beam at PS (T9)
 - 4 cards placed in beam with GasTOF
 - underway now (16\(^{th}\) \(\rightarrow \) 29\(^{th}\) September 2010)
1. GTK Architecture and Requirements

2. Demonstrator ASIC

3. Testing Ethos and Methodology

4. Results
 - TDC Performance
 - Test Pixel Performance
 - Electrical Charge Injection: ASIC Full Chain

5. Synopsis
TDC Performance
EoC TDC Non-Linearity

Differential:

Integral:

DLL TDC Jitter = 7 ps
Test Pixel Performance
T1 RMS Jitter: Qin and Qth

Electrical charge injection.
No detector
≈ 40 ps RMS at 2.4 fC
ENC ≈ 130 e⁻

Laser Charge Injection.
Detector biased at 300V.
≈ 70 ps RMS at 2.4 fC
ENC ≈ 180 e⁻
Analogue Pixel Pulse Height Spectrum with ^{241}Am
T1 RMS Jitter: Operation Frequency

- **T1 RMS Jitter (s)**
- **Frequency (kHz)**
- **Qin=1.0fC**
- **Qin=1.2fC**
- **Qin=1.4fC**
- **Qin=1.6fC**
- **Qin=1.8fC**
- **Qin=2.0fC**
- **Qin=3.0fC**
- **Qin=4.0fC**
- **Qin=5.0fC**
- **Qin=6.0fC**
- **Qin=7.0fC**
- **Qin=8.0fC**
- **Qin=9.0fC**
- **Qin=10.0fC**

M. Noy (PH-ESE-FE, CERN)
Electrical Charge Injection: ASIC Full Chain
T0 Transfer Function

TDC Time vs Pulse Generator Offset, Qinj=3fC
T0 and T1 as a function of Injected Charge

Measured and Corrected times as a function of Q

Uncorrected
Corrected
RMS T0 Jitter Vs Q: Average Case

Mean T0 RMS Jitter

Time walk compensated, full chain readout, all pixels firing.
Systematic (uncorrectable) Residual TimeWalk

M. Noy (PH-ESE-FE, CERN)
1. GTK Architecture and Requirements

2. Demonstrator ASIC

3. Testing Ethos and Methodology

4. Results
 - TDC Performance
 - Test Pixel Performance
 - Electrical Charge Injection: ASIC Full Chain

5. Synopsis
The GigaTracker represents a very challenging project

- $< 200\,\text{ps}$ RMS time resolution
- $> 800\,\text{MHz}$ beam rate
- Harsh radiation environment
- $< 0.5\% X_0$
The GigaTracker represents a very challenging project
- \(< 200\, ps\) RMS time resolution
- \(> 800\, MHz\) beam rate
- Harsh radiation environment
- \(< 0.5\%\, X_0\)

Demonstrator ASIC and detector implemented
- DLL Based TDC which gives \(97\, ps\) nominal time binning
 - monotonic behaviour
 - RMS DNL \(\sim 0.17\, LSBs\)
 - RMS INL \(\sim 0.27\, LSBs\)
The GigaTracker represents a very challenging project
- < 200 ps RMS time resolution
- > 800 MHz beam rate
- Harsh radiation environment
- < 0.5% X_0

Demonstrator ASIC and detector implemented
- DLL Based TDC which gives 97 ps nominal time binning
 - monotonic behaviour
 - RMS DNL \sim 0.17 LSBs
 - RMS INL \sim 0.27 LSBs

Excellent Pixel Performance
- Leading Edge Jitter \sim 40 ps bare ASIC at 2.4 fC
- Leading Edge Jitter \sim 70 ps Full depleted sensor with light injection at 2.4 fC
Synopsis

- The GigaTracker represents a very challenging project
 - < 200 ps RMS time resolution
 - > 800 MHz beam rate
 - Harsh radiation environment
 - < 0.5% X_0
- Demonstrator ASIC and detector implemented
 - DLL Based TDC which gives 97 ps nominal time binning
 - monotonic behaviour
 - RMS DNL $\sim 0.17 \text{ LSBs}$
 - RMS INL $\sim 0.27 \text{ LSBs}$
- Excellent Pixel Performance
 - Leading Edge Jitter $\sim 40 \text{ ps}$ bare ASIC at 2.4 fC
 - Leading Edge Jitter $\sim 70 \text{ ps}$ Full depleted sensor with light injection at 2.4 fC
- Full chain and time walk correction
 - timewalk correction mechanism shown to work well
 - Residual systematic remainder < 15 ps RMS
 - RMS T0 Jitter $\sim 70 \text{ ps}$ at 2.4 fC (bare ASIC)
Backup Slides
Chips 6 Full Column S-Curve @ 50V

digital s-curve for pixel 1

Charges $1.0 \, fC \rightarrow 5.5 \, fC$
digital s-curve for pixel 1
Chip 6 Full Column Transfer Functions @ 50V

Peaking Height (mV)

All 45 pixels from the full column are shown here
Chip 6: Distribution of Pixel Gains

<table>
<thead>
<tr>
<th>pixel_gains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>RMS</td>
</tr>
<tr>
<td>Underflow</td>
</tr>
<tr>
<td>Overflow</td>
</tr>
</tbody>
</table>

Absolute Pixel Gain (mV/fC)
Chip 6: Distribution of Pixel Offsets

- **Entries**: 45
- **Mean**: 1110 mV
- **RMS**: 11.63 mV
- **Underflow**: 0
- **Overflow**: 0

Offset (mV): 1040, 1060, ..., 1180

M. Noy (PH-ESE-FE, CERN)
NA62 GTK EOC
TWEPP-10. 21.09.2010
31 / 25
ENC Vs Q at 50V, Chip6.

ENC is under 180\,e^−
ENC is under $180e^-$
Extended Range T1

T1 as a function of Q over extended range.

- $T_{\text{inj}} = 2.5$ ns
- $T_{\text{inj}} = 3.5$ ns
- $T_{\text{inj}} = 4.5$ ns
- $T_{\text{inj}} = 5.5$ ns
- $T_{\text{inj}} = 6.5$ ns

M. Noy (PH-ESE-FE, CERN)

NA62 GTK EOC

TWEPP-10. 21.09.2010 34 / 25
Extended Range T1 Jitter

T1 Jitter as a function of Q over extended range.

M. Noy (PH-ESE-FE, CERN)
Extended Range T2

T2 as a function of Q over extended range.

- Tinj = 2.5 ns
- Tinj = 3.5 ns
- Tinj = 4.5 ns
- Tinj = 5.5 ns
- Tinj = 6.5 ns

M. Noy (PH-ESE-FE, CERN)
Extended Range T2 Jitter

T2 Jitter as a function of Q over extended range.

- Tinj = 2.5 ns
- Tinj = 3.5 ns
- Tinj = 4.5 ns
- Tinj = 5.5 ns
- Tinj = 6.5 ns
Extended Range TOT

TOT as a function of Q over extended range.

M. Noy (PH-ESE-FE, CERN)
Extended Range TOT Jitter

TOT Jitter as a function of Q over extended range.

M. Noy (PH-ESE-FE, CERN)